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SUMMARY 

The theory of operation of, and the experimental resul ts  obtained from, 
two types of mass spectrometer, t h e  massenfi l ter  and the  omegatron, a re  pre- 
sented. It i s  concluded that the massenfi l ter  exhib i t s  some s igni f icant  ad- 
vantages over the ornegatron as well as other  types of mass spectrometers 
previously used i n  upper-atmosphere research. 
these advantages include s implici ty  of construction, a b i l i t y  t o  operate t o  
higher  dens i t ies ,  and operation which i s  r e l a t i v e l y  independent of ionic  
energies.  This l a t t e r  leads t o  spectra uniquely r e l a t ed  t o  the  gas under 
analysis  and in te rpre ta t ion  of r e su l t s  i s  simplified.  Elimination of the  
magnetic f i e l d  reduces weight as compared with the  omegatron and conventional 
spectrometers. Obtainable s e n s i t i v i t y  i n  terms of ion current per  un i t  pres- 
s u r e  and uni t  e lectron beam c u r r e n t  should be comparable t o  the Bennett tube. 

A t  comparable resolutions,  

Inasmuch as one of- the objectives i s  t o  measure the extent  of dissocia-  
t i o n  i n  the ambient atmosphere, it i s  necessary t o  eliminate co l l i s ion  pro- 
cesses with the  apparatus i n  which recombination i s  l i k e l y  t o  occur. A pre- 
l iminary ion source design f o r  the massenfi l ter  i s  described i n  which t h i s  
probabi l i ty  i s  reduced t o  an acceptable value. 

A separable instrument package, designed t o  avoid outgassing and recom- 
binat ion problems, i s  described. 

PURPOSE 

The purpose of the research as s e t  f o r t h  i n  the contract  i s  t o  conduct a 
"spec ia l  invest igat ion f o r  development of rocket instrumentation packages f o r  
measuring the propert ies  of the  upper atmosphere." By m u t u a l  agreement with 
NASA s c i e n t i s t s ,  t h i s  broad objective has been more spec i f i ca l ly  defined t o  
develop instrumentation capable of y ie lding pressure,  temperature, density,  
and composition data  i n  the range of from 100-200 kilometers. It i s  f u r t h e r  
understood tha t :  

a. Composition measurements i n  su f f i c i en t  d e t a i l  t o  y i e ld  mean molec- 
u l a r  weight are required, t he  d e t a i l s  of d i ssoc ia t ion  of oxygen and 
nitrogen a re  highly desirable,  and the  r e l a t i v e  abundance of t he  
minor const i tuents  need not be an i n i t i a l  objective.  

b. Synoptic c a p a b i l i t y i s  a primary object ive.  

x i  



1. INTRODUCTION 

This report  summarizes the progress of the upper-atmosphere research pro j- 
e c t  ca r r i ed  out by the Department of Aeronautical and Astronautical  Engineering 
of The University of Michigan i n  fu l f i l lment  of National Aeronautical and Space 
Administration Contract No. NASw-4 with The University of Michigan Research In- 
s t i t u t e .  
The contract  was  executed 
began. T h i s  report  presents new material  as wel l  as materials covered i n  a 
memorandum report  of June, 1959, and l e t t e r  reports  transmitted 3 September 
1959 and 23 October 1959. 

The first-year contract  period w a s  27 October 1958 t o  1 November 1959. 
about 1December 1958 at  which time technica l  work 
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2. BACKGROUND 

A s  a r e s u l t  of rocket measurentents made since 1946 and pa r t i cu la r ly  dur- 
ing the I G Y  aboard a va r i e ty  of rockets, the  physical s t ruc ture  of the atmos- 
phere-pressure, temperature, density, and composition-is generally known t o  
an a l t i t u d e  of 90 km. Synoptic var ia t ions and a f e w  spec ia l  phenoTnena related 
t o  s t ruc ture ,  such as ozone and wind systems, a re  not as wel l  known. However, 
it i s  general ly  agreed t h a t  s a t i s f ac to ry  techniques f o r  obtaining more syn- 
op t i c  da ta  are available.  Many organizations have gathered such da ta  and the 
High Altitude Engineering Laboratory i n  the  Department of Aeronautical and 
Astronautical  Engineering of The University of Michigan has been a s igni f icant  
contr ibutor .  

Above 90 km, however, t he  s i t ua t ion  i s  f a r  d i f f e ren t .  The mean free 
path becomes the same order of magnitude as the dimensions of the rocket-borne 
instruments. Measurements of the  s t r u c t u r a l  parameters based on aerodynamic 
flow theory became subject  t o  large e r r o r  o r  become completely unworkable. 
Drag cannot be measured with present techniques except by in tegra t ion  of long- 
term e f fec t s ,  acous t ica l  energy cannot be coupled t o  the atmosphere, and out- 
gassing of the instruments and vehicle can e a s i l y  overwhelm the parameters un- 
d e r  invest igat ion.  I n  addition, dissociat ion of oxygen and nitrogen-which 
makes composition measurement so important-often introduces la rge  e r r o r s  i n  
these measurements due t o  recombination. 

Unt i l  the advent of s a t e l l i t e s ,  v i r t u a l l y  no measurements of dens i t ies  
i n  the  region 200 km and beyond existed.  Several  points  were obtained by 
s a t e l l i t e s  and are  compared i n  Fig. 1 with dens i t i e s  obtained from the ARDC 
Model Atmosphere, 1956.l 
those theo re t i ca l ly  obtained by nearly a f a c t o r  of 10 and the  discrepancy in-  
creases with a l t i t ude .  Further  use of dens i ty  da t a  t o  derive pressures and 
temperatures requires  a knowledge of mean molecular weights. Figure 2 i l l u s -  
t r a t e s  the wide discrepancy i n  these values obtained from the ARK Model A t -  
mosphere, from Whitney's Model2 based on the theor ies  of Chapman3 and Nicolet, 
and from masurements taken by NRL,5 
of the  var ia t ions  are real. Nevertheless, the  need f o r  more and independent 
da t a  i n  an e f f o r t  t o  resolve the ambiguities i s  self-evident.  The research 
sponsored under t h i s  contract  i s  directed toward contr ibut ing da ta  i n  these 
areas. 

The measured values a t  200 km are seen t o  exceed 

4 
It i s  t o  be expected, of course, t h a t  some 

3 
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3. APPROACH 

The fou r  parameters of i n t e re s t  i n  t h i s  invest igat ion,  P, T, p, and M, 
are independently r e l a t ed  by the  equation of s t a t e  and by the  hydrostat ic  
equation. Measurement of any two, therefore ,  i s  s u f f i c i e n t  t o  calculate  the  
remaining unknowns. The e a r l y  e f f o r t  of the pro jec t  w a s  d i rec ted  toward a 
se l ec t ion  of the  pararneters t o  measure and the bas ic  methods by which t o  
perform these measurernents. The ant ic ipated range of these parameters and 
of others  c lose ly  r e l a t ed  w a s  obtained from Ref. 1 as follows: 

TABLE I 

STRUCTURAL PARAMETERS OF THE ATMOSPHERE: 

Pressure (mm Hg) 
Dens it y ( kg/m3 ) 

Tempera tu re  ( O K )  

Mean molecular weight 

0 km 

760 
1.225 

288.16 
28.966 

Mean f r e e  path (cm) 
Number dens i ty  (no. /m3) 

6.63 x 
2.55 x 13’ 

Average p a r t i c l e  speed (rn/sec) 458.9 

100 km 200 km 

3.46 2.20 
7.12 1.11 x 

207 712 
26.48 22.36 

5.65 x lo4 10.43 
1.62 2.99 1015 

407 821 

Various methods of measuring pressure, mass density,  temperature, mean 
molecular weight, and number density w e r e  considered. I n  the range of values 
given by Table I, it w a s  concluded t h a t  measurernents of the number of mole- 
cules  per uni t  volume (he rea f t e r  ca l led  p a r t i c l e  dens i ty)  using an ionizat ion 
gage and measurement of composition by in - f l i gh t  mass spectrometry w a s  the 
bes t  approach. 
mass dens i ty  from which temperature and pressure can be calculated.  

These two sets of data  w i l l  y ie ld  mean molecular weight and 

Several  instruments capable of i n - f l i gh t  mass spectrontetry w e r e  con- 
sidered. Included were the diatron ( s i m i l a r  i n  pr inc ip le  t o  the conventional 
mss spectrometer), the  Bennett and Bendix t ime-of-fl ight mass spectrometers, 
the omegatron, and, a t  a l a t e r  date, the Paul Massenfil ter.  O f  these,  the 
Paul Massenfi l ter  has been selected as the  instrument most adaptable t o  the 
requirements of the contract .  

7 



4. MASSENFILTER 

4.1. PRINCIPLF: OF OPERA'I'ION 

6 The massenfilter, described by Paul e t  al., separates  ions by exposing -- 
them t o  an e l e c t r i c  f i e l d  which i s  a l i n e a r  funct ion of t he  coordinates. The 
p o t e n t i a l  of such a f i e l d  i s  expressible i n  the  form, 

= V, (ax 2 + by2 + cz 2 ) (4.1.1) vx, Y, z 

where a + b + c = 0 since the LaPlacian of a f i e l d  i n  charge-free space must 
vanish. I n  the massenfi l ter  design, Paul s e t s  a = -b = 1/RO2, c = 0. 
f i e l d  i s  produced exact ly  by hyperbolic e lectrodes arranged 90" apa r t .  A close 
approximation out t o  R = 0.8 ROT i s  provided by cy l ind r i ca l  e lectrodes (Fig. 3) 
when Rrod/Ro = 1.16 and the  operating voltages are given by 

Such a 

vox = u + v cos ut 
LII- 

vo Y = - "..---I 
-- _ _  ~- 

(4.1.2) 

(4.1.3) 

Fig.  3. Circillar e lectrode arrangement. 

The p o t e n t i a l  a t  any point  of t he  f i e l d  i s  given by 

(X2-Y2) 
R02 

= (u  + v cos u t )  
X, Y 

V 

9 

(4.1.4) 



and the  equations of  motion of a s ingly  charged ion a re  

X 
m x  + 2e ( U  + v COS at) 7 = o (4.1.5 1 

R O  

L = o  (4.1.6) mj; - 2e (U + v COS u t )  
R02 

mi' = 0 (4.1.7) 

Equation (4 .1 .7)  merely indicates  the  z-component of ve loc i ty  is  constant.  
s t i t u t i o n  of t he  re la t ions  

Sub- 

L o t  = 25 (4.1.8) 

8 e ~  a =  
mRo2 w2 

4eV 
q =  mRo2 Lo2 

transforms Eqs. (4.1.5) and (4.1.6) t o  

- d2x + ( a  + 2q cos 25)x 
dE2 

= o 

(4.1.9) 

( 4 . 1  .lo) 

(4.1.11) 

(4.1.12 ) 

Both of these equations are  Mathieu d i f f e r e n t i d  equations. The so u t ion  of 
e i t h e r  of these yields a complicated a-q p lo t  of s t a b i l i t y  regions.'J8 Within 
these regions x (or y )  remain bounded as 5 + 00 while outside these regions, x 
(or y )  + 00 as 5 -f m. For an ion  t o  be s table ,  both the  x and y components of 
motion must remain bounded. Hence both working points  ax, qx and ay, qy [ =  -ax, 
-qx from Eqs. (4.1.11) and (4.1.12)] must l i e  i n  s t ab le  regions.  Reflecting the  
s t a b i l i t y  diagram about the  q-axis r e s u l t s  i n  the  composite s t a b i l i t y  diagram 
of Ref. 6 (Fig. 4 )  wherein both conditions f o r  s t a b i l i t y  a re  met simultaneously. 
I n  addi t ion t o  the  region i l l u s t r a t e d  i n  Fig. 4, another s m a l l  region e x i s t s  a t  
high values of a and q and at a high value of a/q. This s m a l l  region has not 
been invest igated since it leads t o  impract ical ly  la rge  voltages f o r  the  heavy 
gases. It may, however, be qui te  usefu l  f o r  t he  analysis  of  hydrogen and helium 
i n  other applications.  

For f ixed  values of Ro, w, U, and V, (4.1.9) and (4.1.10) show t h a t  the work 
Point of an ion i s  determined only by m/e. 
pendent of mass, all ions l i e  on a l i n e  through the or igin,  t he  slope of which 
is  given by 2 U/V. 

Since the  r a t i o  a/q = 2 U/V i s  inde- 

For values of a/q < 0.237/0.706 = 0.336, t h i s  l i n e  in t e r sec t s  

10 
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t he  triangle of Fig. 4. 
te rcept  points  (ql@) are  s t ab le .  
moved toward the  apex o f  the t r i ang le  and the  in te rcept  range can be made as nar- 
row as desired u n t i l  the l i n e  no longer in t e r sec t s  t he  t r i a n g l e  and nothing is  
s t ab le .  
r a t i o  agrees with the theore t ica l  predict ion within the  l i m i t s  of observational 
accuracy. 

Only those ions whose work point  l i e s  between the in-  
By increasing 2 U/V, t he  in te rcepts  can be 

It w i l l  be shown la ter  t h a t  experimental determination of t h i s  marginal 

Not only must an ion be s t ab le  by the  def in i t ions  given above ( i . e . ,  x and y 
are bounded as 6 + w ) ,  but i t s  amplitude of o s c i l l a t i o n  must remain smaller than 
Ro so t h a t  it can reach the  co l lec tor  without f i r s t  impinging on one of the  rods. 
A s  resolut ion i s  increased, we move closer  t o  the  apex of t he  s t a b i l i t y  diagram 
(Fig. 4 )  and any work point within l i e s  c loser  t o  the  s t a b i l i t y  boundaries. Thus 
the maximum excursion amplitude of an ion  grows with resolution, other  f ac to r s  
remaining the  same. %'?x? mrudmum excursbn anplitudes depend also on the i n i t i a l  injectir;ln 
conditions, xo, yo, &, ko, and uto. A s  the  working point moves in to  the  s t ab le  
region, an increase of co l l ec to r  ion current  with dis tance from the  nearest  sta- 
b i l i t y  l i m i t  occurs s ince ions which enter  f a r t h e r  off  the  ax is  progressively 
reach the col lector .  A s  the  second s t a b i l i t y  l i m i t  i s  approached, t he  ion  cur- 
ren t  decreases. To achieve 106 transmission of the  s t ab le  ions somewhere be- 
tween the s t a b i l i t y  intercepts ,  the i n i t i a l  conditions must be l imited.  Such 
l imi t a t ion  obviously becomes more severe as t h e  reso lu t ion  is  increased. This 
gives rise t o  two possible modes of operation: 

a. Low resolving power i n  which the spec t ra l  peaks appear as trapezoids 
Amplitude is  independent of resolving with a f l a t  top and lo& transmission. 

power. 

b .  High resolution i n  which the peaks approach t r i ang le s  and t h e i r  ampli- 
tude becomes inversely proportional t o  resolving power. 

4.2. DESIGN EQUATIONS 

I n  the  case of t he  massenfilter, resolut ion i s  defined as the  r a t i o  m/Am 
(= - s/Aq) where Am i s  taken a t  half-amplitude. For 106 transmission and low 
resolution, base width and half-amplitude width a re  near ly  the  same due t o  the  
f l a t - top  and s teep s ides .  By geometric construction near t he  apex of the  sta- 
b i l i t y  diagram o f  Fig. 4, Paul shows t h a t  

(4.2.1) 

where ao.706 i s  the ordinate of t he  working point when q = 0.706. For high 
resolution, where the peaks a r e  nearly t r iangular ,  t he  value of Am a t  ha l f -  
amplitude i s  approximately half  t h a t  a t  the base and, by the  foregoing def in i -  
t ion,  t he  resolut ion i s  twice t h a t  given by 8q. (4 .2.1) .  
tha t ,  

Paul fu r the r  shows 
f o r  in jec t ion  p a r a l l e l  t o  t he  axis,  t he  optimum i n l e t  port  diameter i s  
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given approximately by 

(4.2.2) 

A t  t h i s  value of i n l e t  por t  diameter, lo@ transmission should j u s t  be rea l ized  
when the  work point is equidis tant  from the s t a b i l i t y  limits (Fig. 4 ) .  
t ion ,  f o r  those ions in jec ted  on the axis, it is shown t h a t  the maximum permis- 
s i b l e  radial ve loc i ty  f o r  a s t ab le  ion is given by 

I n  addi- 

It should be noted t h a t  Eqs . (4.2.2) and (4.2 -3 ) a re  mutually exclusive, i . e . ,  
f o r  an i n l e t  po r t  diameter given by Eq. (4.2.2), the value of Eq. (4.2.3) must 
be zero and vice versa.  Hence, i f  an inlet port  is  designed according t o  the  
c r i t e r i a  given by these equations, the  rea l izable  reso lu t ion  of the  massenfi l ter  
w i l l  be somewhat l e s s  than the design value. Further,  the resolut ion used i n  
these equations, and i n  those t o  follow, i s  based on the width of the  peak a t  
half  amplitude and, f o r  the  triangular peaks obtained up t o  10@ transmission, 
i s  therefore  twice the value given by Eq. (4.2.1).  

To be exci ted t o  an amplitude grea te r  than %, an  unstable ion must res ide  
within the  four-pole f i e l d  f o r  a minimum number of cycles, n, of the dr iving 
frequency. The number of cycles i s  dependent on the resolving power. This num- 
ber has been experimentally determined around a reso lu t ion  of 100 and i s  given 
by Paul as approximately 

n = 3.5 5/m/Am (4.2.4) 

Based on Eq. (4.2.4),  one can determine the maximum ion  in j ec t ion  veloci ty .  
the apex coordinates of the  s t a b i l i t y  diagram of Fig.  4 where a = 0.237 and q = 
0.706 and from Eqs. (4.1.9) and (4.1.10), a f t e r  conversion t o  p rac t i ca l  un i t s ,  
it follows t h a t  

From 

IJ = 7.22 ~f~ %2 vo l t s  peak (4.2.5)  

where 

A = atomic m a s s  number, 
f = frequency i n  megacycles, and 
Ro = f i e l d  radius  i n  cm. 

Also 

2u 0.336 = - 
q 0.206 V 

0.237 - - =  a - -  (4.2.6) 



Hence 

U = 0 . 1 6 8 ~  = 1.21 Af2 Ro2 v o l t s  (4.2.7) 

Using Eq.  (4.2.3) and subs t i tu t ing  from Eq. (4.2.5), the maximum permissi- 
b l e  r a d i a l  energy f o r  focusing of s tab le  ions in jec ted  on the ax is  i s  given ap- 
proximately by 

- e lec t ron  v o l t s  
'R - 15 ( m b d  

(4.2.8) 

Using Eq.  (4.2.4),  it can be shown t h a t  t he  m a x i m u m  voltage through which the 
ions can be accelerated p r i o r  t o  in jec t ion  i n t o  the  f i e l d  i s  

vo l t s  
Am 

= 0.042 A L2f2 m 'inma, (4 .2 .9)  

where 

L = length of four-pole f i e l d  i n  cm, and 
f = driving frequency i n  megacycles. 

An accelerat ing voltage grea te r  than Vinmax as given by Eq. (4.2.9) will r e s u l t  
i n  a shorter  residence time than required t o  undergo the  number of cycles given 
by E q .  (4 .2 .4) .  
c i t e d  t o  an amplitude equal t o  o r  greater  than Ro with r e su l t an t  decrease i n  e f -  
f ec t ive  resolut ion.  

Hence, under these conditions, all unstable ions w i l l  not be ex- 

Because of the f i e ld - f r ee  space therein,  ion paths through t h e  in j ec t ion  
port  are s t r a igh t  l i nes .  From the  foregoing, it should be designed t o  l i m i t  the  
maximum ion  e x i t  angle. The value of t h i s  angle can be shown t o  be 

- R v 
~ a n e  = - - 

Vin 'in 
(4.2.10) 

where 

VR = r a d i a l  velocity,  
vin = axial velocity, and 
WR i s  obtained f r o m  Eq.  (4.2.8) and Vin from Eq. (4 .2 .9) .  

From E q s .  (4 .2 .5)  and (4.2.6), one can see t h a t  a mass sweep can be real ized 
by sweeping e i t h e r  frequency o r  voltage, maintaining the  r a t i o  of U/V constant. 
Since a voltage sweep is  simpler t o  obtain and yields  a l i n e a r  mass sca le  f o r  a 
l i n e a r  voltage sweep, t h i s  has been the  method selected i n  all subsequent work. 

Finally,  except f o r  changes i n  charge which might be experienced, the  ten- 
dency of an ion  t o  be s tab le  or unstable i s  not changed t o  a first approximation 
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m by small-angle sca t t e r ing  due t o  co l l i s ion  with r e s idua l  gas molecules. 
t h e  massenfi l ter  can reasonably be expected t o  operate up t o  r e l a t i v e l y  high 
pressures .  
8.5 x 
seen i n  an apparatus i n  which the t o t a l  length of ion path between crea t ion  and 
co l l ec t ion  w a s  approximately 160 cm, approximately t e n  times the length of the 
f l i g h t  design t o  be described. 

Thus, 

I n  Ref. 6, Paul i l l u s t r a t e s  the CH3 peaks obtained at  pressures of 
am Hg and 6.5 x lo-* mm Hg. No s ign i f i can t  change i n  shape can be 

4-3 .  DESIGN AND DESCRIPTION OF LABORATORY MASSWILTER 

Since reso lu t ion  as defined i n  the previous sec t ion  r e f e r s  t o  the  half-am- 
p l i t ude  width of t he  peak, a design value of 40 w a s  chosen. 
an equivalent value of 20 at the base of the t r iangular  peak theo re t i ca l ly  ob- 
ta ined when reso lu t ion  is  a t  the l imi t ing  value f o r  106 transmission. 
t ion,  t h i s  value provides f o r  a s m a l l  adjustment t o  achieve 100$ transmission f o r  
those ions simultaneously at  the  maximum values of both Eqs. (4.2.2) and (4.2.3)-  
The maximum peak a-c voltage w a s  a r b i t r a r i l y  se lec ted  a t  500 vo l t s  ( f o r  m a s s  46) 
and the  rod length w a s  se lec ted  a t  12.75 em (5 i n . ) .  I n  addition, t h e  ion  in jec-  
t i o n  voltage w a s  se lec ted  a t  45 vol t s  t o  avoid d i f f i c u l t i e s  involved with control-  
l i n g  low-energy ion t r a j e c t o r i e s  and s t i l l  keep the dr iving frequency as  low as 
possible .  Subs t i tu t ing  the selected values of i n j ec t ion  voltage, length, and 
reso lu t ion  i n t o  Eq. (4.2.9),  we find, f o r  mass 46, an operating frequency of  2.39 
Me. Using Eq. (4.2.5), an % of 0.512 em is  obtained. I n  Section 4 .1  it w a s  
noted t h a t  a r a t i o  Rrod/Ro = 1.16 yielded the c loses t  approximation t o  t h e  i d e a l  
hyperbolic f i e l d .  
missible radial energy of 0.833 electron v o l t s  and Eq. (4.2.10) shows Tan 8 = 
0.136 o r  8 = 7-75". 
port ,  the  i n i t i a l  design l imi ted  the in j ec t ion  angle t o  about 5.25". 
Eq. (4.2.2) gives an i n j ec t ion  por t  diameter of 0.081 em (0.032 i n . ) .  
tial design parameters are  grouped below i n  Table 11. 

This corresponds t o  

I n  addi- 

Thus Rrod is  0.595 em. Equation (4.2.8) y ie lds  a m a x i m u m  per- 

As p a r t i a l  compensation f o r  f i n i t e  dimension of the i n l e t  
Final ly ,  

The i n i -  

The following comments on t h i s  design may be made, based on the foregoing 
discussion. F i r s t ,  s ince the  intercept  range on the s t a b i l i t y  diagram i s  inde- 
pendent of m a s s ,  the  ult imate resolut ion based on t h i s  consideration i s  constant 
f o r  all gases. Secondly, the combination of L, Vin, and f were obtained f o r  a 
m a s s  number of 46. Lower masses will therefore  spend l e s s  time and a fewer num- 
ber o f  rf cycles within the  f i e l d .  Hence one must operate fu r the r  from the  sta- 
b i l i t y  l i m i t  t o  remove all unstable ions. The p r a c t i c a l  e f f e c t  i s  t o  reduce the  
e f f ec t ive  reso lu t ion  of the l i g h t e r  masses somewhat. However, t h i s  e f f e c t  should 
be acceptable s ince lower resolut ion of the l i g h t e r  masses i s  to le rab le .  Finally,  
because in jec ted  ions can have both an i n i t i a l  r a d i a l  component of ve loc i ty  and 
an i n i t i a l  displacementoff the axis,  the  in te rcept  range on the  s t a b i l i t y  diagram 
may have t o  be increased s l i g h t l y  above design values t o  achieve 106 transmission. 

A laboratory massenfi l ter  designed according t o  the parameters of Table I1 
was constructed and i s  shown schematically i n  Fig. 5 .  Two tungsten fi laments,  
connected i n  p a r a l l e l ,  a re  used as the e lec t ron  source. I n  typ ica l  operation at 
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TABLE I1 

INITIAL DESIGN PARAMETERS 

Quantity Symbol Value 

Mass number 
Resolution 
Peak driving voltage 
Length of f i e l d  
Ion in jec t ion  voltage 

A 46 
m / h  40 

L 12.75 cm 
V 500 vo l t s  

Vin 45 vo l t s  

Frequency 
Fie ld  radius 
Rod radius 
Number of cycles 
Maximum r a d i a l  energy 

f 2.39 Mc 
0.512 cm RO 

Rrod 0.595 cm 

wR 

n 22 
0.833 e lec t ron  vo l t  

M a x i m u m  in jec t ion  angle 8 7.75" (5.25" used) 
In jec t ion  p o r t  diameter Din 0.081 cm (0.032 i n . )  

ELECTRON OR1 F I CE 
IONS CREATED IN THIS VOLUME 

FILAMENT SHIELD ION DRIFT GRID 

INJECTION PORT 

I I I I I LRoDS h r 6 V  * / /  I I -u+vcoswt 

E - E  - -("+V cos ut) I -  1 

I 
I 
I 
I 
I 
I 

Fig. 5 .  Massenfil ter schematic. 
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6 vol t s ,  the  t o t a l  filament current is 3 amperes and t h e  t o t a l  emission current  
is  between 2 and 3 milliamperes. Electrons are accelerated toward the  o r i f i c e s  
i n  t h e  "hat" s t ruc tu re  which surrounds the  ionizing volume by v i r tue  of the  f i e l d s  
created by the ba t t e ry  i n  Fig. 5 which is  typ ica l ly  45 vo l t s .  This appears t o  be 
a reasonable compromise between peak ionizat ion e f f ic iency  and a low enough elec- 
t r o n  energy t o  keep double ionization negl igible .  
ion accelerat ing f i e l d s  . 

The same ba t t e ry  produces the 

The sh ie lds  behind the f i laments  help d i r e c t  the  emitted electrons toward 
the  "hat." 
ionize gas within the volume. The ions which are  created experience a force to -  
w a r d  the dr i f t  gr id  by v i r tue  o f  the negative f i e l d  gradient supplied by t h a t  
gr id .  The design purpose of the drift grid is t o  keep the f i e l d s  inside the 
"hat" low and t o  r e s t r i c t  the greatest  accelerat ing f i e l d s  t o  the region between 
the i n l e t  o r i f i c e  and dr i f t  grid.  I n  t h i s  way, it w a s  hoped t o  approach a mono- 
energet ic  beam i r respec t ive  of the  point within the  "hat" at  which the  ion w a s  
created.  I n  pract ice ,  it did not seem t o  matter much and, i n  most runs t o  be de- 
scribed, the  drift  g r id  w a s  s e t  fo r  max imum ion current .  This occurred at some 
s e t t i n g  s l i g h t l y  above ground potent ia l ,  presumably due not only t o  the  stronger 
f i e l d s  t o  p u l l  the ions from the "hat" volume, but a l so  t o  the focusing ac t ion  
of the  f i e l d s .  The purpose of t he  o r i f i c e  i s  t o  provide a f i e l d - f r e e  space near 
t he  in j ec t ion  po r t  so no fu r the r  def lect ion of the ion path can occur. The in -  
j ec t ion  po r t  admits only those ions conforming t o  the i n i t i a l  conditions previ-  
ously described. 
ions reach the  co l lec tor  and the t ransferred c b g e  i s  the current  input  t o  the  
electrometer. 

Those electrons which pass through the o r i f i c e s  are avai lable  t o  

Upon negotiating the  four-pole f i e l d  formed by the  rods, stable 

Figures 6-8 a re  photographs of t he  t e s t  model of the  massenfi l ter .  
6 shows the massenfi l ter  i n  exploded form. 
t u re  and ion source s t ruc ture  are  shown i n  Fig.  7. Here the hinged filament 
sh i e ld  i s  e a s i l y  seen i n  the  open posi t ion t o  allow the  filament t o  be welded 
in to  place. 
t i o n  in to  the  vacuum housing are  shown i n  Fig. 8. 

Figure 
The separa te ly  assembled rod s t ruc -  

The completed massenfil ter and co l l ec to r  s t ruc tu res  ready f o r  inser -  

4.4. MASSENFILTER TEST RESULTS 

As seen i n  Section 4.3, adaptation of the  massenfi l ter  t o  high-al t i tude re-  
search required several  compromises i n  the  various design parameters, such as 
ove ra l l  s ize ,  operating voltages, etc.  Consequently, the  preliminary t e s t s  on 
the laboratory model of the massenfil ter were made f o r  the purpose of comparing 
ac tua l  performance cha rac t e r i s t i c s  with those predicted by the  design equations. 
Following t h i s ,  spec i f i c  changes i n  t he  design parameters-chiefly the  i n l e t  con- 
d i t i ons  as determined by the in jec t ion  port-were made t o  determine t h e i r  e f f e c t s  
on the  massenfi l ter  performance. Throughout what follows, reso lu t ion  is  defined 
on the  bas i s  of peak width a t  half-amplitude unless otherwise s t a t ed .  The point 
at  which 100$ transmission is  l o s t  is determined when t h e  height of a given peak 
begins t o  decrease with increasing a/q r a t i o .  I n  pract ice ,  comparisons of r e s -  
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Fig. 6 .  Massenfilter exploded view. 
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o lu t ion  were made a t  the 95s transmission point  for a given species s ince this 
point  could be more prec ise ly  determined. The c r i t e r i a  of grea tes t  i n t e r e s t  i s  
the b e s t  reso lu t ion  obtainable without s ign i f i can t  l o s s  of transmission and the 
maximum current obtainable under conditions of lOO$ transmission and acceptable 
reso lu t ion .  

4.4.1. Tests of Initial Design.-In Section 4.1, the  r a t i o  of coordinates -- 
of the  apex of t he  triangular s t a b i l i t y  region w a s  given as 0.336 which is equal 
t o  2 U/V. 
the  r a t i o  of U / V m  = 0.238 is  more convenient t o  work with i n  laboratory prac- 
t i c e .  

Thus U/V i s  0.168. Since most meters a re  ca l ibra ted  i n  RMS values, 

By the theory presented i n  Section 5 . 1  we note tha t ,  as the r a t i o  of U/Vm 
starts at a low value and approaches 0.238, the peaks should become narrower 
s ince the  s t a b i l i t y  region determined by the in te rcept  range becomes smaller. 
A t  some point j u s t  p r i o r  t o  reaching 0.238, the s ide slopes of the peak should 
merge in to  a t r i ang le  and the peak value should decrease s ince 106 transmission 
is  no longer taking place. 
longer in te rcepts  the  s t a b i l i t y  t r iangle ,  nothing is  s tab le ,  and no transmission 
occurs. Figure 9 i l l u s t r a t e s  t h i s  behavior i n  the  design massenfi l ter  i n  a ser- 
i e s  of spectrograms i n  which U/Vm i s  increased from 0.20 t o  0.24 i n  f i v e  s teps .  
The right-hand peak is  nitrogen (AMU = 28).  
f i e d  res idua l  gas of approximately mass 17 (possibly OH or C&) which appears 
whenever a new model i s  f irst  turned on and then gradually disappears with oper- 
a t ion  and pumping. 
U / V m  = 0.24. 
slope, corresponding t o  lower mass numbers, moves t o  a much grea te r  extent  than 
the right-hand slope. 
t i v e  angles a t  which the mass l i n e  crosses the s t a b i l i t y  l i m i t s .  The increase 
a t  the  far l e f t  (corresponding t o  zero mass number) is  the  transmission of all 
ions down the  f i e l d  since the rod voltages a re  zero. Although t e s t s  have not 
yet  been run t o  ve r i fy  the  assumption, the co l lec tor  current at t h i s  point  should 
be a measure of overa l l  p a r t i c l e  density. I n  t h i s  manner, it i s  an t ic ipa ted  t h a t  
one instrument can be ca l ibra ted  t o  y ie ld  p a r t i c l e  densi ty  and composition. The 
behavior of the  peak with U/Vm i s  graphical ly  i l l u s t r a t e d  by Fig.  10 i n  which 
the  cen t r a l  spectrogram i s  a composite of the top and bottom. Final ly ,  it w i l l  
be noted t h a t  t h e  curvature a t  base and summit a t  the  l e f t  s ide  of t he  peaks is  
more pronounced than the  r i g h t  side, which again follows from the  more gradual 
recession of t he  m a s s  l i n e  from the s t a b i l i t y  l i m i t  a t  the  low m a s s  end as seen 
i n  Fig.  4. 

Finally,  beyond U/Vw of 0.238, the m a s s  l i n e  no 

The left-hand peak is  an unidenti-  

It w i l l  be noted t h a t  both peaks disappear completely a t  
It w i l l  a l so  be noted t h a t ,  as U / V w  is  increased, the  lef t -hand 

This behavior follows d i r e c t l y  from Fig. 4 and the respec- 

From Eq. (4.2.9),  t he  maximum a t ta inable  reso lu t ion  f o r  nitrogen with an in -  
Test r e -  j ec t ion  po ten t i a l  of 45 vo l t s  would be expected t o  be approximately 24. 

sults, however, y i e ld  a resolut ion of about 18 f o r  ni t rogen a t  9546 transmission. 
This smaller value i s  probably due to  the  incompatability of Eqs. (4.2.2) and 
(4.2.3) already discussed i n  Section 4.2. The current obtained with t h i s  model, 
normalized t o  a pressure of 1 x mm Hg was 0.5 x 
e lec t ron  beam of about 2.3 ma.  
f i c i e c t  ion source was  made i n  t h i s  model. ) 

amperes a t  a 40-volt 
(It should be noted t h a t  no attempt toward an e f -  
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An invest igat ion of the  e f fec t  of in jec t ion  voltage, Vin, on resolut ion re- 
su l t ed  i n  t h e  spectrograms of Fig. ll which were taken a t  a r a t i o  U / V m  of 0.23. 
Since the  e lec t ron  beam voltage w a s  t he  same as the ion in jec t ion  voltage through- 
out  (both being derived from the  same source of po ten t i a l ) ,  t he  ion  currents  var- 
i ed  considerably throughout t h i s  se r ies  of  spectrograms and the c i r c u i t  sens i t iv -  
i t y  was  adjusted i n  each case t o  give peaks of the  same height. From Fig. 10, we 
infer t h a t  t he  transmission of Fig. 11 w a s  approximately 85%. It will be noted 
t h a t ,  as the  in jec t ion  voltage w a s  reduced the peak narrowed somewhat. A more 
pronounced e f f e c t  is  the sharpening of t h e  base in te rcepts  of the peak which i s  
of importance i n  separating and ident i fying adjacent masses of widely d i f f e ren t  
abundances. A c learer  indicat ion of  t he  differences i n  peak shape i s  given by the  
composite spectrogram of Fig. 12, a repeat of selected spectrograms of Fig. ll. 
I n  both f igures ,  the s m a l l  peak a t  mass number 17 i s  the  res idua l  unidentified gas 
i n  the  system. Numerical da ta  obtained from Fig. 11 are p lo t ted  i n  Fig. 13. Here 
i n  graphic form, the  la rge  percentage change i n  resolut ion as defined a t  5% peak 
amplitude is  c l ea r ly  evident as compared with the  change at  half-amplitude. 

A t  t h i s  point,  it may be w e l l  t o  note f rom Eq. (4.2.9) t h a t  a reduction of 
If one wishes t o  maintain V i n  a t  45 V i n  i s  equivalent t o  lengthening the rods. 

vo l t s  and have t h e  base resolut ion achieved at, say, 22-1/2 vol t s ,  he can accom- 
p l i s h  t h i s  by increasing rod length b y &  or by 41%. 

I n  addi t ion t o  the  a b i l i t y  t o  resolve masses, the  correct  reproduction of 
mass abundance i s  an important property t o  invest igate .  
spectrogram obtained with Ne2' and Ne22. 
of 10.8% of Ne2'. 
by a f ac to r  of 5 t o  f a c i l i t a t e  i n  determination of the height of the  Ne22 peak. 
The bottom spectrogram i s  a repeat of the  top t o  v e r i f y  absence of d r i f t  i n  pres- 
sure or c i r c u i t  gain. Again, from Fig. 10 and the  U / V m  r a t i o  of  0.23 which w a s  
used, we i n fe r  t h a t  transmission i n  t he  spectrograms of Fig. 14 w a s  85% (or bet-  
t e r  s ince neon i s  l i g h t e r  than nitrogen and has a higher ve loc i ty) .  Within the  
limits of observational accuracy, Fig. 14 indicates  t h a t  Ne22 i s  10% of Ne2'. 
difference between the  observed and. handbook r a t i o  may be due t o  nonl inear i t ies  
i n  the  scope presentation, a departure of t he  gain increase from a f ac to r  of 5 or 
a var ia t ion  i n  the  percent transmission of the two masses. 
from 106 exists, t h e  heavier gases w i l l  depart fu r the r  than the  l i g h t e r . )  Only 
about l@ of the  difference might be a t t r i bu tab le  t o  the composition of t he  neon 
sample i t se l f .  

Figure 14 shows the  
Theoretically,  Ne22 e x i s t s  i n  the  amount 

I n  the  center spectrogram, the  gain of the system was  increased 

The 

(If  any departure 

4.4 .2. Variation - of Design Pasameters. -The e f f e c t  of in le t  port  conditions 
on resolut ion and current were next investigated.  As i n l e t  conditions are ex- 
tended, i . e . ,  wider angles and larger  por t s  used, a l a rge r  ion  current  w i l l  be 
achieved a t  the expense of resolution a t  10% transmission. 
promise between high current and high resolut ion must be made. This series of 
t e s t s  was  undertaken t o  a id  i n  making such a compromise. 

Accordingly, a com- 

The various inlet  por t  configurations t e s t ed  are summarized i n  Table 111. 
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TABLE I11 

INLET PORT CONFIGURATIONS 

Din 
(Inches ) 

0 
(Degrees ) 

0.031 5 - 2  
0.031 6.5 

0.0145 
0.0145 

0.062 
0.062 

5.0  
2.2 

5 .0  
7.8 

Reducing D i n  t o  0.0145 i n .  while maintaining 0 a t  5" resu l ted  i n  no appre- 
c iab le  increase i n  resolut ion.  Ion currents  dropped t o  s l i g h t l y  less than 25$ 
of  t h e i r  former value o r  about i n  the same r a t i o  as t h e  reduction i n  i n l e t  area. 
N e x t ,  a reduction in  i n l e t  angle, 0 ,  2.2O resu l ted  i n  a s l i g h t  improvement i n  
resolut ion from 18 t o  20 but made no s ign i f i can t  change i n  ion  currents .  The 
inference t o  be drawn is  t h a t  the  ion stream impinging on the  center  of t he  i n -  
l e t  por t  i s  e s sen t i a l ly  a x i a l  i n  d i rec t ion  although no fu r the r  evidence e x i s t s  
t o  ve r i fy  t h i s  statement. 

Since no great gain i n  resolut ion resu l ted  from r e s t r i c t i o n s  of inlet  con- 
d i t i ons  below design values, perhaps a relaxat ion of i n l e t  conditions w i l l  y ie ld  
a l a r g e r  ion  current without a grea t  s a c r i f i c e  i n  resolut ion.  Accordingly, t he  
o r ig ina l  por t  was widened t o  an angle of 6.5" maintaining t h e  e x i t  diameter a t  
0.031 in .  The half-amplitude resolut ion f o r  nitrogen dropped from 18 t o  12 while 
the  current increased from 0.5 x 10-l' amperes t o  0.8 x 10-10 amperes. This con- 
f igura t ion ,  then,shows no promise of any advantage. It w a s  used, however, t o  
gather t h e  data presented i n  Fig.  15  which i l l u s t r a t e s  the  dependence of ion  cur- 
r en t  and resolut ion on t h e  r a t i o  U/Vm and a l so  shows the  method by which reso- 
l u t i o n  a t  9546 transmission w a s  determined. 

As  a f inal  step,  the  in j ec t ion  port  diameter w a s  opened t o  0.062 in .  and 
tested at values of 0 equal t o  5" and 7.8". 
from 18 to 13 w a s  noted a t  5", no increase i n  ion  current w a s  observed. 
must be used i n  t h i s  observation, however, s ince t h e  i n l e t  por t  configuration 
had t o  be changed t o  l i m i t  the  angle t o  5". 
reso lu t ion  t o  8 was observed while the peak current  increased t o  2 .8  x 10-l' am'- 
peres.  
s idered unacceptable. 

While a la rge  decline i n  reso lu t ion  
Caution 

A t  0 = 7.8", a fur ther  decrease i n  

While the increase i n  ion  current i s  desirable ,  a resolut ion of 8 i s  con- 

All these r e su l t s  a r e  shown i n  graphic form i n  Figs.  16 and 17. Results 
a r e  too f e w  t o  j u s t i f y  the  presentat ion of a curve; however, related points  a re  
connected by a dotted l i n e .  It does appear, however, t h a t  t he  o r ig ina l  i n l e t  
por t  design parameters result i n  the  best  ove ra l l  operation. 
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DIN INCHES 

Fig. 16. Massenfilter resolution as a function of inlet port configuration. 
Vin = 40 volts; gas = N2. 
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INCHES Ol N 

Fig. 17. 
Vin = 40 vol ts ;  gas = N2. 

Massenfilter ion current  as a function of i n l e t  p o r t  configuration. 
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I n  summary, then, it appears that  t he  i n i t i a l  design i s  pe r fec t ly  adaptable 
t o  f l i g h t .  Essent ia l ly  the  same values of 8 and D i n  will be used i n  the  f l i g h t  
model. Aside from changes i n  t h e  ionizing sec t ion  t o  be described and changes 
i n  mechanical de t a i l ,  the  only change ant ic ipated i n  the  f l i gh t  design may be a 
5046 increase i n  rod length t o  obtain b e t t e r  reso lu t ion  a t  the  base of t h e  peak 
as discussed e a r l i e r .  

4.5. FLIGHT MODEL DESIGN 

Translation of laboratory r e s u l t s  t o  a f l igh t  model design has been i n i -  
t i a t e d .  
t o r ,  the  analyzing sect ion,  the  ionizat ion volume, and the  electron source. 
present,  a further invest igat ion of the l a t te r  two appears t o  o f f e r  the  bes t  
promise of increased sensit ivity-highest  r a t i o  of ion  current  t o  ambient density.  

The massenfilter may be divided in to  roughly four sections-the col lec-  
A t  

4.5.1. Ionization Volume.-Two major improvements i n  the  design of t h e  ion- 
iza t ion  volume appear possible at t h i s  writ ing.  
a la rge  f r ac t ion  of t h e  avai lable  e lectrons are  probably impinging d i r e c t l y  on 
the "hat" rather than f a l l i n g  through the  o r i f i c e s  in to  the  volume where useful  
ionizat ion can occur. 
trons.  t o  the axis of the  instrument where the created ion  has the  grea tes t  prob- 
a b i l i t y  of arr iving a t  t h e  i n l e t  por t  within the  necessary r e s t r i c t e d  i n l e t  con- 
d i t ions .  The second major possible improvement l i e s  i n  designing the ionizat ion 
source t o  focus more e f f ec t ive ly  those ions t h a t  are formed on the inlet  o r i f i c e .  

I n  the  present laboratory design, 

I n  addition, no attempt has been made t o  focus these elec-  

The f l i g h t  model w i l l  replace the  "hat" and o r i f i c e  arrangement used i n  the  
laboratory design with a volume enclosed by a f i n e  gr id .  
should r e s u l t :  more e f f i c i e n t  u t i l i z a t i o n  of t h e  electrons emitted by t i e  f i l a -  
ment since a greater f r ac t ion  w i l l  enter  t h e  ionizing volume, and a major reduc- 
t i o n  i n  the  probabi l i ty  of a neutral  molecule experiencing a c o l l i s i o n  with the  
apparatus p r i o r  t o  being ionized. 
d e t a i l  i n  a l a t e r  section. I n  addition, cy l indr ica l  symmetry will focus the  
electrons on t h e  axis where ionizat ion i s  most e f f i c i e n t  from a s e n s i t i v i t y  
standpoint. 

Two d i s t i n c t  advantages 

This l a t t e r  point  w i l l  be discussed i n  more 

Direction of the created ions t o  the  inlet  po r t  i s  t o  be accomplished by 
the use of t he  cy l indr ica l  l ens  system common t o  cathode-ray-tube e lec t ron  guns. 
I n  t h i s  manner, a greater  percentage of the  created ions w i l l  reach the  inlet  
port  within the  l imited i n l e t  conditions demanded by t h e  analyzing sect ion.  

Preliminary work along these l i n e s  has been i n i t i a t e d .  Figure 18 i s  a view 
of t he  chmponents of the cy l indr ica l  l ens  system cur ren t ly  under tes t .  The elec-  
t ron  accelerat ing gr id  can be seen on the  near end of the  cylinder located second 
from the  l e f t .  Assembled, t h i s  g r id  i s  coaxial with a c i r c u l a r  filament around 
the outside.  The two cylinders t o  the  r igh t  are sect ions of the l ens  system and 
the s m a l l  d isks  comprise a s l o t t e d  co l lec tor  so designed t o  f a c i l i t a t e  i n  de te r -  
mining beam cross sect ion.  The la rge  cylinder on the  l e f t  serves as a filament 
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sh ie ld  and has been incorporated f o r  experimental reasons. 
model i s  considered unlikely.  The s l o t s  which are apparent i n  the  l a rge r  cylinders 
are only fo r  t he  purpose of r e s t r i c t i n g  heat flow from t h e  filament t o  t h e  Teflon 
mounting p l a t e .  

I ts  need i n  the  f l i g h t  

The uni t  has been assembled and i s  cur ren t ly  under t e s t .  Results w i l l  be re- 
ported at  a future date.  
place the  s o l i d  cylinders with gr id  s t ructures .  

For reasons t o  be discussed, the f i n a l  design w i l l  r e -  

4.5.2. Electron Source.-A la rge  increase i n  ion  current as a function of 
ambient pressure can obviously be rea l ized  by increasing t h e  e lec t ron  emission. 
The laboratory massenfil ter has been operated a t  about 2.3-ma emission and a fac-  
t o r  of t e n  should be e a s i l y  rea l izable .  Two of the  important propert ies  of t he  
filament are the  necessary heating power and the behavior i n  an environment con- 
ta in ing  oxygen. 

Under the  dynamic conditions of f l i g h t ,  l o s s  of oxygen by chemical combina- 
t i o n  with the  filament i s  not considered detrimental  i n  i t s e l f .  Indeed, any 
nacent oxygen which impinges on a surface p r io r  t o  ion iza t ion  w i l l  give r i s e  t o  
an erroneous composition determination due t o  recombination. I n  a laboratory 
system f o r  ca l ibra t ion  and t e s t  purposes, however, a filament which reac ts  a t  
the slowest possible r a t e  with oxygen i s  highly desirable .  I n  e i the r  case, con- 
tinuous operation of the  filament under ambient conditions i s  mandatory. 

I n  the work heretofore reported, tungsten fi laments were used as the  source 
of e lectrons.  A t  operating temperatures, the W03 formed by chemical reac t ion  
evaporates off the filament. Hence any gas i s  quickly depleted of i t s  oxygen 
content, so  t h a t ,  a t  t he  pressure used, only temporary e f f ec t s  on the  emission 
cha rac t e r i s t i c s  have been noted. Presently,  experiments are underway t o  inves- 
t i g a t e  the comparative power requirements and oxidation propert ies  of tungsten 
and thoria-coated iridium filaments.  Initial results indica te  the  ir idium f i l a -  
ments lose  emission capab i l i t i e s  t o  a grea te r  extent  but  recover i n  a shor te r  
time than tungsten. It i s  f e l t  t h a t  emission regulat ion by filament tempera- 
ture w i l l  subs tan t ia l ly  compensate fo r  the changes i n  work function, so t h a t  the 
advantages of thoria-coated iridium need not be foregone. These advantages a re  
much lower heating power per  milliampere emission current  and continuous opera- 
t i o n  at  r e l a t ive ly  high oxygen p a r t i a l  pressures without f a i l u r e .  Tests are con- 
t inuing and w i l l  be reported i n  grea te r  d e t a i l  i n  a subsequent report .  

4.6. ADVANTAGES 

A rocket-borne instrument should be l i g h t  i n  weight. Obviously, too,  it 
should be re l iab le .  
and operate. If the instrument i s  t o  be used synoptically,  these cha rac t e r i s t i c s  
become mandatory. 

I n  general, t h i s  implies that it should be simple t o  bui ld  

Within t h i s  frame of reference, analysis of t he  theory and r e s u l t s  of the  
laboratory experiments indicate  the following advantages possessed by the  mass- 
enf i l t e r  : 
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(1) 
(2) Simple, rugged construction. 
( 3 )  

(4) 

(5)  Simple supporting c i r cu i t ry .  
(6) 
(7) 

Light i n  wieght s ince it requires  no magnetic f i e l d .  

Reliable and repeatable operation without requiring constant and 
meticulous a t t en t ion  t o  de t a i l .  
Sens i t i v i ty  expected t o  be comparable t o  the  bes t  so fa r  obtained 
i n  nonmagnetic mass spectrometers, assuming an e f f i c i e n t  ion  source. 

Relat ively insens i t ive  t o  s m a l l  per turbat ions.  
Resolution increases with m a s s  number where it i s  most needed. 

In addition, t he  massenfil ter has the a b i l i t y  t o  work t o  comparatively high 
dens i t i e s  which is  very desirable  i n  t h i s  pa r t i cu la r  application. 
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5. OMEGATRON 

5.1. PRINCIPLE! OF OPERATION 

Although a brief e l e m n t a r y  description of the omegatron appeared i n  1949 9 
and a discussion of the  use of resonance absorption techniques t o  de tec t  res- 
onant ions i n  the  omegatron appeared i n  1950,1° the  f i rs t  comprehensive a r t i c l e  
with an analysis  of omegatron operation appeared i n  1951.11 Subsequent ar t i -  
cles12'15 dea l  with t r a j e c t o r y  analysis and appl icat ions of the  omegatron. The 
per t inent  theory, taken from the above references, i s  presented i n  an appendix 
f o r  the  convenience of the  reader. 

5.2. DESIGN AND PFELIMINmy TEST 

Using the  Bennett masspectrometer, Meadows and Townsend16 report  a n  ana- 
l y s i s  of neu t r a l  gases above WSPG ranging between mass numbers 14 and 44. 
This, then, was  selected as the minimum range over which any analysis  should 
be considered. Nowhere i n  t h i s  range are any two gases any c lose r  than 2 AMU 
w i t h  the exception of CO, and N20. Thus a reso lu t ion  of 20 should be adequate 
f o r  analyzing the  const i tuents  of the upper atmosphere. The omegatron may 
reasonably be expected t o  operate t o  dens i t i e s  where the  mean f r e e  path and 
o r b i t a l  path lengths are  of the  same order of magnitude. Using the  mean f r e e  
path of 10 cm from Table I a t  100 km ( the lowest a l t i t u d e  spec i f ied  i n  the 
work statement) and a resolut ion of 20, Eq. ( A l 7 )  y ie lds  a value of 2.5 mm 
f o r  Ro. 
working conditions are summarized i n  Table IV. 

Based on t h i s  va lue  and an assumed f l u x  dens i ty  of 3000 gauss, the  

TABLE IV 

OMEGATRON WORKING PARAMETERS* 

Mass No. L M n EO f t W - 
(AMIT) (em) AM (r',evs) (mv/cm) (kc)  '(psec] (ev)  

46 i o  20 12.7 117 loo 128 0.59 
14 i o  20 12.7 385 328 39 1.93 
1 10 20 12.7 5390 4600 2.8 27 

RO = 0.25 cm; B = 3000 gauss. * 
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T o  approximate the uniform e l e c t r i c  f i e l d s  assumed i n  t h e i r  t h e o r e t i c a l  
development, Hipple, Sommer, and Thomas'' formed the cubic analyzing volume 
of t h e i r  omegatron with a s e r i e s  of guard rings a t  each end of which were 
located the rf plates.  The rf voltage w a s  equal ly  divided across the guard 
rings.  Unless accurate cor re la t ion  with the theory i s  required, however, 
simple workable omegatrons have been constructed by other  w0rkers'3'~5 by u s -  
ing a simple cubic s t ruc ture ,  eliminating the guard r ings and accepting the 
nonuniform e l e c t r i c  f i e l d  gradients.  Such w a s  the  construction selected; it 
is i l l u s t r a t e d  i n  Fig. 19. Here, e lectrons are obtained by thermionic emis- 
s ion from the tungsten fi lament.  Those which a r e  emitted a t  the ax is  of the  
i n s t r u m n t  proceed down the  magnetic f i e l d  through the holes i n  the box and 
f i n a l l y  impinge on the anode. Adjustment of the beam cont ro l  p l a t e  voltage 
regulates  the  beam current.  Ions created on the  ax is  by the  e lec t ron  beam 
are acted upon by the rf f i e l d  created by the  p l a t e s  and those which a re  i n  
resonance reach the co l l ec to r  and are measured by the  electrometer.  To 
repe l  the ions from the ends of the box,a small pos i t ive  "trapping" voltage, 
t yp ica l ly  a few tenths of a vo l t ,  i s  applied t o  the box. 

The or ig ina l  un i t  b u i l t  i n  ou r  laboratory had a l l  elements supported on 
t h e i r  leads. T h i s  proved unsuccessful due t o  the  d i f f i c u l t y  of maintaining 
proper alignment and led  t o  the uni t ized construction shown i n  Figs. 20 and 
21. Not shown i n  these f igures  i s  the co l l ec to r  which w a s  supported by the 
g lass  tubulat ion and projected i n  from the s ide.  The rf p l a t e s  and end faces  
form a box approximately 7 mm3. 
t h i s  model were inconclusive owing t o  t h e i r  highly var iable  nature. Figure 
22 i l l u s t r a t e s  the type of spectra  obtainable with t h i s  un i t .  The mass sca le  
of Fig. 22 is  derived from Eq. ( A 3 )  using the  measured value of 2'750 gauss 
f o r  f l u x  density. The gas w a s  nitrogen and the lack  of resolut ion and the 
erroneous locat ion of the peak i s  s e l f  evident. Inadequate shielding of the 
ion volume from surface charges accumulating on the g lass  w a l l s  w a s  suspected 
as a major reason f o r  these d i f f i c u l t i e s .  This l ed  t o  the  construction of the 
enclosed model shown i n  Fig. 23. The co l l ec to r  protruded through the s l o t  
v i s ib l e  i n t h i s  f igure.  I n  t h i s  manner t e s t s  of a r i g i d  model of f l i g h t  d i -  
mensions w e r e  i n i t i a t ed .  

Ro w a s  adjusted t o  2.5 mm. Results with 

I n  support of the program, the Reuter-Stokes Company, Cleveland, Ohio, 
w a s  contracted t o  bu i ld  a f u l l y  shielded omegatron (Fig.  24) i n  which the e l e -  
ments were supported by the leads.  Other fea tures  d i f f e red  only i n  d e t a i l  
from the  uni t  of Fig. 23. Only a small f r a c t i o n  of the t o t a l  filament emis- 
s ion current  w a s  avai lable  i n  the beam, presumably because of misalignment Of 

the holes. 
comparable with those obtained from the o ther  ornegatrons a t  t h a t  time. The 
spectrum obtained f o r  helium i s  shown i n  Fig. 25 and those f o r  neon, nitrogen, 
and argon i n  Fig. 26. The small peak a t  12-13 mass un i t s  i n  Fig. 26 i s  pre- 
sumed t o  be due t o  doubly ionized nitrogen. 
l a t t e r  two f igures  i s  s t i l l  inadequate, it i s  s i g n i f i c a n t l y  b e t t e r  than 'that 
obtained with the f i r s t  model. I n  addition, there  i s  much b e t t e r  agreemnt  
between the  theo re t i ca l  mass scale  and the pos i t ion  of the peaks. 

Nevertheless, a s e r i e s  of t e s t s  w a s  made which yielded r e su l t s  

While the resolut ion i n  these 
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Fig. 25. Helium peak, commercial omegatron. 
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Fig. 26. Ne, N2, and A spectrum, commercial omegatron. 
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cornparks 
Figs.  25 and 26. 

the resolution determined from Eq.  (Al3) with t h a t  estimated from 

TABm V 

COMPARISON OF EXPERIMENTAL AND PREDICTED RESOLUTIONS 

M 
AM - M (Figs. 25 and 26) Gas 

Helium 19.6 
Ne on 3.9 
Nitrogen 2.8 
Argon 2.0 

11.6 
2.2 
2.6 
2.9 

*Eo = 1.16 volts/cm 
PT = 2 x l o v 6  mm Hg 
B = 2750 gauss 
Ro = 0.25 cm 

5.3. TESTS OF FINAL MODEL 

Most of the  t e s t s  were run on the model of Fig. 23. I n  these t e s t s  a num- 
be r  of parameters were varied such as magnetic f l u x  dens i ty  and direct ion;  Eo 
and the manner of appl icat ion (single-ended dr ive t o  e i t h e r  p l a t e  and balanced 
d r ive ) ;  e l ec t ron  beam current ;  trapping, anode and beam cont ro l  voltages; 
d r i f t  voltage; pressure of the gas sample and Ro. 
perimentation, it w a s  determined t h a t  bes t  r e s u l t s  w e r e  obtained with an e lec-  
t r o n  beam of 2 t o  3 microamperes and 45 vo l t s  energy, with a t rapping po ten t i a l  
of approximately 0.3 volt ,  with a single-ended rf drive t o  a p l a t e  which de- 
pended on the magnetic f i e l d  d i rec t ion ,  with the highest  magnetic f l u x  densi ty  
(4300 gauss i n  t h i s  case)  and with anode and e lec t ron  beam controls  a t  box po- 
t e n t i a l .  
e f f ec t  on the performance of the analyzing sec t ion  i f  the  e lec t ron  beam current 
i s  adjusted t o  the prescribed values. 
the  beam cont ro l  electrode and the anode had a s ign i f i can t  e f f e c t  on the  spectra  
obtained presumably because of the r a d i a l  f i e l d s  which protruded i n t o  the  box 
through the  adjacent holes. 

Following considerable ex- 

Theoretically,  the po ten t i a l  of these two electrodes should have no 

I n  prac t ice ,  however, the po ten t i a l s  of 

Reference ( 1 4 )  shows t h a t  the resonant frequency of an ion subjected t o  
an addi t iona l  r ad ia l  e l e c t r i c  f i e l d  i s  given by 

eB cur = - - -  m B r  (50 3.1) 
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r 
ur i s  the  angular resonance frequency at  radius  r, and 
E, i s  the  r a d i a l  e l e c t r i c  f i e l d  s t rength  a t  radius  r. 

i s  the  t r a j e c t o r y  radius  a t  any ins tan t ,  

Thus, unless E r / r  i s  a constant or the  e n t i r e  second term i s  negl igible ,  the  
instantaneous resonant frequency of an ion is  a var iable  funct ion of i t s  or- 
b i t a l  radius. This term, therefore,  not only r e s u l t s  i n  an apparent mass 
s h i f t  but sets an upper l i m i t  on the a t ta inable  resolution. This comes about 
s ince,  a t  low Eo, an ion en ter ing  a resonant s p i r a l  path a t  the  center  be- 
comes nonresonant a t  l a rge r  radii, gets  out of phase, re turns  t o  a smaller 
radius,  and never reaches the  col lector .  Equation (5.3.1) indicates  t he  rela- 
t i v e  e f fec ts  are g rea t e r  a t  high mass numbers. For  example, a 1 6  change i n  CD 
f o r  argon occurs when E r / r  i s  only 2 vol t s  cm2-a value e a s i l y  reached i n  the  
v i c i n i t y  of the holes when the  adjacent e lec t rodes  a re  operated a t  po ten t ia l s  
s ign i f i can t ly  removed from box poten t ia l .  Argon ion current i s  p lo t ted  against  
the applied rf voltage i n  Fig.  27 and exhib i t s  a d e f i n i t e  cutoff value undoubt- 
ed ly  a t t r i bu tab le  t o  the  r a d i a l  f i e ld .  

The second term of Eq. (5.3.1) has two other  contr ibut ing sources. The 
f i r s t  of these i s  the  space charge which r e s u l t s  from the e lec t ron  beam and 
cloud of nonresonant ions near the axis. Being the  slower pa r t i c l e s ,  the ion 
cloud i s  the major e f f ec t .  The rad ia l  f i e l d  s t rength  i s  inversely proportional 
t o  r, so  the  second term varies  as l/$. For t h i s  reason, i n  p r a c t i c a l  opera- 
t i on ,  the  ion cloud i s  minimized by using an e lec t ron  beam i n  the  neighborhood 
of microamperes. Attempts t o  sweep the volume of charge cont inual ly  by the 
d r i f t  voltage, discussed i n  Section C of the Appendix, yielded only negative 
r e su l t s .  

The second contributing source a r i s e s  from the  trapping voltage. While 
t h i s  po ten t i a l  i s  intended only t o  prevent a x i a l  l o s s  of ions, it a l s o  gives 
rise t o  r a d i a l  f i e l d  components. The upper value of trapping voltage i s  un- 
doubtedly l imited by t h i s  e f f e c t  so t h a t  one f inds  an optimum i n  the  v i c i n i t y  
of a few ten ths  of a vo l t  which is j u s t  s u f f i c i e n t  t o  overcone thermal ener- 
gies .  
p lo t t ed  as a function of rf drive voltage. 
off" voltage increases with trapping voltage but the slope of curves a l s o  in- 
creases so  t h a t  higher peak ion currents are obtained with moderate t rapping 
voltage at properly selected drive voltages. 

Figure 28 i l l u s t r a t e s  the  e f f ec t  of t rapping voltage on ion currents  
It w i l l  be noted t h a t  the rf "cut- 

Figures 29 and 30 i l l u s t r a t e  some of the bes t  spec t ra  obtained with the  
omegatron operated under careful ly  optimized conditions and a magnetic f l u x  
dens i ty  increased t o  4300 gauss. The observed reso lu t ion  of t he  helium peak 
of Fig. 29 is  35 while the value predicted by Eq. ( A 1 3 )  i s  46. The predicted 
resolut ions f o r  neon, argon, and t h e i r  isotopes and those observed f romFig .  
30 are  given i n  Table V I .  
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Peak ion currents as functions of E, a t  various trapping voltages.  
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TABLE V I  

COMPARISON OF EXPERIMENTAL AND PREDICTED RESOLUTIONS 

M 
AM M - (Fig. 30) - [Eq. ( A 1 3 ) I "  

aM Gas 

26 
31 
23  

9.3 

*E, = 0.8 volt/cm 
PT = 1.3 x 
B = 4300 gauss 
Ro = 0.25 cm 

uxu Hg 

The g rea t e r  magnitude of t he  observed values of resolut ion compared with 
predicted values are probably due t o  e i t h e r  or a combination of the  following 
causes: 

a. Due t o  the cutoff charac te r i s t ics  evident i n  Figs.  27 and 28, t he  
spec t ra  of Fig. 30 are i n  r e a l i t y  only the top  port ion of the peaks which 
would be seen i n  the  absence of the cutoff charac te r i s t ic .  Hence, t he  base- 
l i n e  in te rcept  distance i s  e f fec t ive ly  reduced, yielding apparently higher  
resolution. One would expect the  smaller peaks would show the  grea tes t  ap- 
parent improveEnt as evidenced by Ne2;? and A36 i n  Table VI., 

b. Since the omegatron e l e c t r i c  f i e l d s  depart  considerably from the  uni- 
form f i e l d s  assumed i n  the derivation which l e d  t o  Eq. (Al3), the  ions may gain 
less energy per  cycle from the rf f i e l d  than the  theory indicates ,  make more 
revolutions,  and have higher  resolutions. With the  physical  configuration of 
the  omegatraon, the f i e l d  at the  axis i s  l e s s  than t h a t  obtained on the  as- 
sumption of a uniform f i e l d .  
served resolut ion of Ne20 as a function of Eo i s  p lo t t ed  and compared with 
predictedvalues. While the observed values are everywhere higher, t he  gen- 
eral  shapes of the two curves a re  similar. 

The Sam e f f e c t  i f  noted i n  Fig. 31 i n  which ob- 

Returning t o  Fig.  30, we note t h a t  the  Ne22 peak i s  about 3.7% of the  Ne2' 
peak and the A36 peak is about 0.4% of the A*' peak. 
approximately 11% and 0. $, respectively. 
able of why argon is approximately correct  while neon i s  i n  e r r o r  by a f a c t o r  
of 3* 

The known r a t i o s  are 
N o  explanation i s  readi ly  a v a i l -  
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5.4, CONCLUSIONS 

The chief advantage of the  omgatron i s  i t s  t h e o r e t i c a l  a b i l i t y  t o  achieve 
high resolutions,  pa r t i cu la r ly  at  low mass numbers, with a device of simple con- 
s t ruct ion.  Fromthe t e s t  r e s u l t s  described i n  the e a r l i e r  sect ion,  the  disad- 
vantages may be tabulated as follows: 

A. Theoret ical  

a. Decrease of resolution with increasing mass number a t  
c o m  t an t  E 0. 

b. Since the ions are created on the axis of the magnetic 
f i e l d ,  the  pole faces place a l i m i t  on reducing the  
probabi l i ty  of recombination of ambient molecules a t  the  
surfaces of the apparatus. 

B. Operational 

a. Ideal ized e l e c t r i c  f i e l d s  are  not obtainable with simple 

b. Only the  resonant ions are removed. The remainder create  
e l e  c t rode s t ruc tures  . 
r a d i a l  f i e l d s  which adversely e f f e c t  operation. 

The "operation" disadvantages give rise t o  a number of undesirable ef- 
f e c t s  among which are inaccurate abundance r a t i o s  as indicated by peak heights, 
a l imi t a t ion  on the ult imate resolution obtainable and e r r a t i c  behavior. These 
a l l  stem d i r e c t l y  from the low energies involved (see Table I V ) ,  pa r t i cu la r ly  
a t  the higher mass numbers. 
i m u m  resolut ion [Eq. (A17)] , the only way i n  which the  energy can be increased 
[Eq.  (A18)] is by increasing the f lux  density,  which requires  more magnetic 
material r e su l t i ng  i n  increased weight. 

Since Ro i s  f ixed  by the  maximum dens i ty  and min- 

A t  these low energies, unsymmetric e l e c t r i c  f i e l d s  inside the  omegatron 
a r i s i n g  from contact  po ten t ia l s  ser iously d i s tu rb  the operation. The source 
of these contact po ten t ia l s  i s  assumed t o  be oxides and o ther  contaminants 
on the omegatron surfaces  which give r i s e  t o  surface work funct ion d i f f e r -  
ences which can r e s u l t  i n  po ten t ia l  differences of a vo l t  o r  more. I n  an at- 
tempt t o  eliminate o r  reduce t h i s  possible source, the  u n i t  was  induction- 
heated i n  a hydrogen atmosphere. Performance w a s  degraded, presumably be- 
cause the  s t ruc ture  d id  not permit uniform heating and because of addi t iona l  
contamination "boiled" out of the  insulators .  

A t  t h i s  point,  work on the omegatron was  discontinued because of the  
promising performance of the massenfil ter a l ready described. 

It should be noted, however, t h a t  the ornegatron operates s a t i s f a c t o r i l y  
f o r  hydrogen and helium with reaonsable magnetic f i e l d  s t rengths .  
be a t t r i b u t e d  t o  the large ionic  energies a t  the  radius of co l l ec t ion  (Table 
I V ) .  
aboard vehicles launched t o  analyze these l i g h t  gases. 

This can 

The omegatron may therefore  have some p r a c t i c a l  appl ica t ion  f o r  use 
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6. INSTRUMENTATION PACKAGE 

The rocket se lec ted  by NASA f o r  t h i s  work and concurred i n  by The Univer- 
s i t y  of Michigan group i s  t h e  Nike-Asp. Nose cones from The Cooper Develop- 
ment Company have been received and i n i t i a l  design of the  instrument package 
has been begun. 

A s  rnentioned i n  ear l ier  sections,  the presence of large s o l i d  surfaces 
from which ambient gases can be "reflected" t o  the  ionizing region can r e s u l t  
i n  large e r r o r s  i n  composition measurement. This occurs s ince atomic oxygen 
can recombine t o  molecular o q g e n  a t  the surface.  To minimize these e f f ec t s ,  
the ionizing sect ion i s  designed t o  be located about fou r  inches i n  f r o n t  of 
the i n l e t  port ,  and the intervening cy l indr ica l  l ens  and e lec t ron  acce lera tor  
are composed of f i n e  gr ids .  I n  t h i s  manner, it i s  hoped t o  keep the  s o l i d  
angle the  ion source sees subtended by s o l i d  mater ia l  i n  the  neighborhood of 
lo$ o r  less. 
b e t t e r  of reaching the ionizing volume without f i r s t  co l l id ing  with a s o l i d  
surface.  

Thus an approaching p a r t i c l e  w i l l  have a 9 6  probabi l i ty  o r  

Another aspect of grave importance i n  the  design of an instrumentation 
package i s  the  contr ibut ion of gases evolved from the  package i t s e l f  t o  the 
masurement i n  progress. The importance of t h i s  aspect has been demonstrated 
by the long t i m e  i n t e r v a l  before the ionizat ion gages on Spetnik I11 reached 
ambient equilibrium. To minimize this problem, the  design of the complete pack- 
age places the  pressurized instrument da t a  cyl inder  i n  an evacuated volume. I n  
t h i s  manner, the  major port ionofoccluded gases w i l l  be removed p r i o r  t o  f i r i n g  
and the e r r o r s  a r i s i n g  from t h i s  source reduced by orders of magnitude. 

To el iminate  the  great  volumes of gas and combustion products inherent 
i n  explosive sepa.ratinns used i n  e a r l i e r  work by t h i s  group, a separation 
technique using the  energy released on t r igger ing  cocked springs is  under de- 
velopmnt. A s a t i s f ac to ry  t r igger ,  act ivated by burnout of fuse w i r e ,  has 
been developed and a model has been constructed and tes ted.  

Figure 32 i s  a drawing which i l l u s t r a t e s  the  method of separat ing the 
rocket and e j ec t ing  the da ta  cylinder from i t s  vacuum chamber. The massen- 
f i l t e r  i s  shown a t  the forward end of the  da ta  cylinder.  The pressurized 
da ta  cyl inder  contains the FM-FM telemetry t ransmi t te r ,  the  f i l a w n t  emission 
regulator ,  the  dr iving osc i l l a to r ,  and r e c t i f i e r  f o r  the massenfil ter,  and 
the  associated amplitude modulator, the  electrometer,  the  monitoring c i r c u i t s ,  
and the power supplies.  

Data transmission is  accomplished by means of the  i l l u s t r a t e d  dipole an- 
tenna which was  se lec ted  over se l f -exc i ta t ion  of the  da ta  cyl inder  i tself  f o r  
two reasons. Self-exci ta t ion of the da ta  cyl inder  would r e s u l t  i n  the highest  
e l e c t r i c  f i e l d  s t rengths  a t  the ends where the  massenfi l ter  i s  located. This 
i s  t o  be avoided, if posssible ,  because of the  unavoidable e f f e c t s  on the  ion 
t r a j e c t o r i e s .  I n  addition, the dipole pa t t e rn  w i l l  be more favorable f o r  
transmission t o  the  ground i n  the normal or ien ta t ion  of the da t a  capsule. 
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7. EUCTRONIC CIRCUITRY 

Since the  omegatron has been dropped from consideration f o r  t h i s  project ,  
a de t a i l ed  descr ipt ion of t he  asociated e lec t ronic  c i r c u i t s ,  used and planned, 
does not appear t o  serve any u s e f u l  purpose herein. Hence, t h i s  sec t ion  de- 
sc r ibes  only the  e lec t ronic  c i r cu i t s  r e l a t ing  t o  the  massenfilter. I n  addi- 
t i on ,  de ta i led  descr ipt ions of standard c i r c u i t r y  such as two d-c electrom- 
eters, a balanced output rf amplifier, etc. ,  have km omitted. 

7.1. MASSENFILTER DRIVING OSCILLATOR AND REXTIFIER 

The rf voltage necessary f o r  operation of the massenfi l ter  i s  best  ob- 
ta ined  from a voltage-modulated, push-pull c i r c u i t  balanced with respect t o  
ground. A p a i r  of d-c voltages of opposfte p o l a r i t y  and constant r a t i o  with 
respect  t o  the  rf voltages are required. 
t i o n  of the  rf voltage and adjusting the r a t i o s  by means of voltage dividers.  

These are bes t  derived by r e c t i f i c a -  

The laboratory device f o r  deriving these voltages i s  shown i n  Fig. 33 
The rf generator i s  simply a and the c i r c u i t  diagram is given i n  Fig. 34. 

tuned-grid, tuned-plate,push-pull o sc i l l a to r .  For laboratory use, a mass 
sweep derived from voltage modulation i s  accomplished by sweeping the  B+ volt -  
age. The capaci ty  of the  massenfilter rods forms p a r t  of the  tank  c i r cu i t .  
Tuning of the tank i s  accomplished by use of the  var iable  l5O-mmf  condenser 
and balance with respect t o  ground i s  accomplished with the two 5O-mmf con- 
densers from each end of the  tank t o  ground. 
r ec t i fy ing  the  rf voltage a t  each end of the tank and impressed on the  respec- 
t i v e  rods pa i r s  through a p a i r  of i so l a t ing  2.5-mh chokes. The r a t i o  of d-c 
t o  rf voltages i s  adjustable by means of the 200-K po ten t iomte r s  seen i n  Fig. 
34. 

The d-c voltages are derived by 

This un i t  i s  seen as pa r t  of the  laboratory t e s t  setup shown i n  Fig. 35. 

For  f l i g h t  use, a crystal-controlled,  master osc i l l a to r ,  amplitude-modu- 
la ted ,  power amplif ier  of miniaturized construction i s  under ac t ive  develop- 
ment. 

7.2 EMISSION RF,GULATOR 

Ambient conditions, pa r t i cu la r ly  a t  the lower a l t i t udes ,  w i l l  have large 
e f fec ts  on the  emission charac te r i s t ics  of whatever fi lament is  se lec ted  as 
the massenfi l ter  e lec t ron  source. 
s ion  m u s t  be provided. Transistorized emission regulators  have been described 
i n  the l i t e r a t ~ r e , ’ 7 , ~ ~  and a unit  operating on these  pr inc ipa les  has been con- 
s t ruc ted  with minor design modifications t o  adapt it t o  the appl icat ion.  The 
c i r c u i t  diagram i s  given i n  Fig. 36 and the  laboratory un i t  i s  shown i n  Fig. 37 
toge ther  with i t s  associated test  equipment. 

Hence, some means of regulat ing the  e m i s -  
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Fig. 33. Massenfilter oscillator and rectifier. 
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Fig. 34. Circuit diagram: Massenfilter oscillator and rectifier. 
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Fig. 36. Circuit diagram: emission regulator. 

Fig. 37: Emission regulator, 



The base current input of &1 i s  the difference between the  emission cur- 
r en t  of the  regulated filament and the  current  produced by the reference bat- 
t e r y  i n  the  adjustable emission regulating resis tance.  If the  emission cur- 
r en t  is  smaller than the reference current,  & w i l l  be i n  conduction and am- 
p l i f y  the difference current which is  then the  input t o  @. Trans is tor  & is 
a grounded co l l ec to r  used t o  convert t he  amplified output of Q1 t o  a low i m -  
pedance t o  dr ive the p a r a l l e l  current regulators,  Qs and &Q. These la t te r  
t r a n s i s t o r s  i n  e f f e c t  a c t  as controllable var iable  r e s i s t o r s  i n  the  fi lament 
c i r c u i t .  A s  long as emission current i s  less than the  adjusted reference cur- 
ren t ,  the  current  regulat ing t r ans i s to r s  are i n  f u l l  conduction, del iver ing 
nvurimum heating power t o  the  filarnent. 
heat ing current which produces the reference emission current.  

Operatioq s t a b i l i z e s  a t  the  f i l a m n t  

A s  i s  evident from Figs. 36 and 37, i n i t i a l  t e s t i n g  of the  c i r c u i t  w a s  
Testing accomplished using a standard 826 power r e c t i f i e r  as a dummy load. 

of the c i r c u i t  resul ted i n  a n  emission current  which remained within 1% of 
i ts  adjusted value over a p l a t e  voltage 
over a filament supply ba t t e ry  range of from 4 t o  1 2  vol ts .  
t i o n  i s  stable throughout. 

range of from 22-1/2 t o  100 vo l t s  and 
The c i r c u i t  opera- 

While t h i s  c i r c u i t  i s  sui table  f o r  f l i g h t  use ,  it is  i n e f f i c i e n t  s ince a 
large f r a c t i o n  of the power drawn from the  fi lament supply ba t t e ry  i s  ex- 
pended i n  the variable res is tance by which the regulat ing t r a n s i s t o r s  may be 
represented. I n  addi t ion t o  being ine f f i c i en t ,  the  power d iss ipa ted  i n  the 
t r a n s i s t o r s  requires  the heat sink seen i n  Fig. 37 t o  prevent a temperature 
rise s u f f i c i e n t  t o  r e s u l t  i n  runaway operation. Accordingly, a regulat ion c i r -  
c u i t  which operates the filanaent control  t r a n s i s t o r s  as switches is  under de- 
velopment. I n  t h i s  manner, power d iss ipa t ion  i n  the  t r a n s i s t o r s  i s  a t  the  
minimum possible value. Regulation i s  accomplished by maintaining a constant 
switching rate b u t  varying the  on-off duty cycle as required. If the  switch- 
ing r a t e  i s  s u f f i c i e n t l y  beyond the temperature time constant of the  fi lament,  
no s ign i f i can t  modulation w i l l  r esu l t .  Any res idua l  modulation w i l l  be at a 
frequency beyond the response l i m i t s  of the  massenfi l ter  electrometer c i r c u i t .  
Although the i n i t i a l  version of the c i r c u i t  i s  under t e s t ,  the  r e s u l t s  a re  of 
only a preliminary nature a t  t h i s  writ ing.  

7.3. TELEMETRY 

The standard I R I G  FM-FM telemetry system has been chosen as bes t  adapted 
t o  the  requirenaents of the project.  If possible,  a commercial.$ransmitter 
and ground system w i l l  be purchased. Toward t h i s  end, da ta  on such systems 
and re la ted  components have been obtained from seve ra l  companies. 
l e c t i o n  and placement of orders, however, a w a i t  f u r t h e r  funding. 

Actual se- 

A v i s i t  t o  Wallops Is land i n  June, 1959, disclosed the  existence of a 
p a r t i a l  I R I G  ground s t a t i o n  there a t  t h a t  t i m  and the expectancy of i n s t a l l i n g  
a permanent I R I G  telerneter receiving s t a t i o n  i n  the  inde f in i t e  future .  It i s  
proposed t o  use the  Wallops Island f a c i l i t i e s  as a backup t o  the  pro jec t  sta- 
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t i on .  I n  any event ,  a pro jec t  s t a t i o n  i s  necessary f o r  t e s t s  of t he  ove ra l l  
system, including the rf l i n k  and tape recorder, p r i o r  t o  shipment. 
t i on ,  playback of f l i g h t  da t a  from magnetic tape requires  the  use of the en- 
tire ground s t a t i o n  except f o r  the receiver  and antenna. 
system is  necessary if the  experiment i s  t o  be synoptic. 

I n  addi- 

F ina l ly ,  a complete 

The frequency approved for Wallops I s land  i n  June w a s  240.2 Me with ad- 
F ina l  frequency se l ec t ion  w i l l  d i t i o n a l  requests f o r  244.3 Me and 256.2 Me. 

be made about the  same time orders are placed. 
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8. VACUUM EQUIPMENT 

I n  support of t he  olnegatron and massenfi l ter  t e s t  and development programs, 
a t o t a l  of fou r  high-vacuum systems have been constructed. Two of these are a l l -  
g l a s s  systems, one of which is portable. These are shown i n  Figs.  38 and 39 
and a closeup of one appears i n  Fig. 40 t o  show the  mrcury  shut-off valves and 
the  l i qu id  nitrogen t raps .  I n  addition, a completely dry, s t a in l e s s - s t ee l  sys- 
t e m  has been purchased from Varian Associates and assembled as shown i n  Fig. 
41. Prepumping is  accomplished by the  ac t iva ted  charcoal t r a p  ch i l l ed  by l i q -  
uid nitrogen, a t  t he  bottom of the system. Upon a t t a in ing  a pressure of about 
20 microns, the t r a p  i s  shut off  o r  pinched off  the system and high vacua ob- 
ta ined  with the Vac-Ion pump at  the top. An ionizat ion gage is mounted from 
one f lange of the  crossed tubulation and the instrument t o  be t e s t e d  w i l l  be 
mounted on the remaining flange shown pfnched off i n  Fig. 41. 
s a t i s f a c t o r y  operation has not yet been achieved due t o  leaks. 
of such leaks i s  i n  progress. 

Completely 
Elimination 

Final ly ,  a high-capacity o i l  d i f fus ion  pump has been f i t t e d  with demount- 
able  tubulat ion t o  a i d  i n  rapid t e s t ing  of design changes i n  the massenfilter 
ion source. 
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9. FUTURE PROGRAM 

Suff ic ien t  data indicat ing sa t i s fac tory  operation and r e l i a b i l i t y  of the  
F l igh t  de- massenfi l ter  have been obtained t o  commit the program t o  i t s  use. 

s ign w i l l  d i f f e r  from the  prototype only i n  d e t a i l  and t h i s  e f f o r t  i s  under- 
way. This design w i l l  be completed and three  units w i l l  be b u i l t  and checked. 
The supporting electronics ,  a l ready  underway, w i l l  be packaged f o r  f l i g h t  use. 
The major remaining items t o  be designed and developed are  the f l i g h t  e lec-  
t rome te r s  and the in - f l i gh t  monitoring and ca l ib ra t ion  c i r cu i t ry .  The l a sges t  
item of equipment t o  be purchased is the telemetry system. This equipment w i l l  
be purchased with first-year money which i s  temporarily being diver ted t o  pro j -  
e c t  operating expenses i n  an t ic ipa t ion  of  funds t o  car ry  out the  second year ' s  
work. 

I n  all, t h e e  complete a i rborne  units w i l l  be b u i l t  i n i t i a l l y  f o r  a s e r i e s  
of f i r i n g s  t en ta t ive ly  scheduled f o r  t he  second quarter  of 1960 a t  Wallops Is- 
land. The exact r e l a t i v e  f i r i n g  times as well as the  number of those ac tua l ly  
f i r e d  w i l l  be determined by the degree of success enjoyed on the  i n i t i a l  rounds. 

The major problem which i s  ant ic ipated f o r  f i n a l  adaptation t o  synoptic use 
i s  the  manner i n  which data  w i l l  be correlated with a l t i t u d e  i n  the absence of 
t racking f a c i l i t i e s  such as a re  located at Wallops Is land.  P o s s i b i l i t i e s  i n -  
clude a simple s ing le  s t a t i o n  DOVAP-ballistic camera t racker  or the  r e l a t i o n  of 
a small range of t he  observed data  t o  ambient conditions, e i t h e r  known or inde- 
pendently measured, t o  obtain a s ingle  a l t i tude-t ime point from which the remain- 
der of the  t r a j e c t o r y  can be computed. 
y ie ld  peak time. 
sphere experiment pioneered by t h i s  group. 
f o r  so lu t ion  of t h i s  problem, however, i n  the  course of the i n i t i a l  work of sen- 
s o r  development, and it has been necessar i ly  delayed f o r  t he  fu ture  program. 

This l a t t e r  assumes da ta  symmetry w i l l  
A similar method has been successful ly  used i n  the f a l l i n g  

Very l i t t l e  e f f o r t  has been avai lable  
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APPENDIX 

OMEGATRON : PRINCIPLE OF OPFZATION 

Analysis of t h e  operating pr inciples  of the  omegatron has been covered i n  
the  l i t e r a t ~ e . 9 - ~ 5  For the  convenience of t h e  reader,  the  following presents 
t h e  per t inent  equations and the method by which they are obtained. 

A. EQUATIONS 

The d i f f e r e n t i a l  equations of motion of an ion  i n  crossed rf e l e c t r i c  and 
magnetic f i e l d s  (Fig. 42) are 

i 
I t B  COLLECTOR 

d2x - dY m - - eE s i n  (bot + eB - 
dt2 d t  

dx - eB - 
d t2  d t  

m -  d2Y = 

where : 

m = ion  mass i n  grams, E SIN y t  
x,y = coordinate dis tances  i n  cm, 

/ 

Fig. 42. Omegatron f i e l d  
coordinates. 

e = e lec t ronic  charge i n  emu, 
E = e l e c t r i c  f i e l d  s t rength  i n  emu 

B = magnetic f l u x  densi ty  i n  gauss. 
un i t s ,  and 

Making t h e  subs t i tu t ions  

0 = eB/m 

Q: = eE/m 

and using i n i t i a l  conditions (since the  ionizing e lec t ron  beam i s  confined t o  
the  Z axis) ,  

- v ,  (bot = - =  - -  dY dx 
d t  d t  ., x = o ,  y = O ,  

Simultaneous so lu t ion  of (Al) and (A2) yields  



1 cos %t - i s i n  q t  a -k 

x + i y  = - i  
cu 

-k 
where V = u + i v .  

Finding the  l i m i t  of (A5) as cb0 3 a, subs t i tu t ing  E = cu - coo, neglecting 
the  first t e r m  due t o  i n i t i a l  ve loc i ty  ( t o  be t r ea t ed  la te r ) ,  and f i n a l l y  as- 
suming uo = 03 and E << wo, one can obtain, i n  the v i c i n i t y  of resonance, 

I n  the immediate v i c i n i t y  of resonance, Ref. 12 shows tha t ,  a f t e r  a few 
revolutions,  the  posi t ion of  an ion i s  r e l a t i v e l y  independent of the  phase angle 
of the  e l e c t r i c  f i e l d  a t  i t s  creation. 
p l i f i e d  t o  

Se t t ing  @ = 0, (A6)  can be fu r the r  s i m -  

E E t  r = - s i n  - 
BE 2 

(A7 ) 

A t  a frequency s l i g h t l y  off resonance, the amplitude of r w i l l  o s c i l l a t e  a t  a 
frequency of E / ~ J (  cps and w i l l  never exceed E/BE. A t  resonance, the l i m i t  of 
(A7) as E 3 0 yields the  expression 

E t  
2B 

r = -  

Thus one can see t h a t  the  resonant ionic  path i s  an Archimedes' s p i r a l  and t h e  
radius  increases with t i m e  a t  a uniform ra t e .  
from the  axis ,  charged p a r t i c l e s  w i l l  never reach it i f ,  from ( A 7 ) ,  

If a co l l ec to r  i s  located Ro 

E 
% > B E  

Thus, there  i s  a c r i t i c a l  value 

E E '  = - 
ROB 

for which ions jus t  reach the co l lec tor .  Defining reso lu t ion  as 
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(center  frequency/frequency width of base),  then 

(uRoB GB2e M 
AM 2E 2E m 

- - =  - -  

i n  p rac t i ca l  units w - 3  1 = 4.8 x 10 - 
Eo M 

-5 ROB2 

where, i n  (Al3) 

B = magnetic flux densi ty  i n  gauss, 

Ro = 
Eo = 
M = atomic m a s s  units. 

co l lec tor  radius i n  cm, 
peak e l e c t r i c  f i e l d  gradient i n  volts/cm, and 

It can be e a s i l y  shown t h a t  the length of an Archimedes' s p i r a l  is  equal t o  
the  number of revolutions multiplied by the  circumference of the t u r n  of average 
radius .  Thus the  path length of the resonant ion a t  co l lec t ion  i s  

L = r t n %  (A14 

where n i s  the  number of tu rns  pr ior  t o  col lect ion.  Now 

2rrn = - eB 
t m 

(I) = 2rtf = - 

and 
2 

M 
- 2 -  

e B t  
2m 2m E E m  AM 

2BR0 eB Ro 
- -  - eB 

- rtn = - - - - - 

using (A8) and (Al2). Subst i tut ing ( ~ 1 6 )  i n t o  (Al4), we have 

M L = 2R0 - 
hM 

The energy of the resonant ion a t  co l lec t ion  i s  given by 

B. EFFECT OF INITIAL VELOCITY 

-+ 
Equation (A5)  shows t h a t  an i n i t i a l  velocity,  V, of an ion  superimposes a 

c i r c u l a r  motion upon the Archimedes' s p i r a l  a r i s ing  from the  act ion of t h e  elec- 



+ 
t r i c  rf f ie ld .*  The c i r c l e  i s  tangent t o  the  ve loc i ty  vector V at the  or igin,  
has an angular velocity equal t o  w, t he  ion resonant frequency, and a radius  of 
IVl/w. An analysis of t h e  e f f e c t s  of t he  i n i t i a l  ve loc i ty  shows t h a t  t he  reso- 

l u t i o n  i s  modified since the number of turns  p r i o r  t o  co l l ec t ion  is  changed. I n  
addition, t h e  maximum o r b i t a l  dimensions are  a l s o  changed. I f ,  as indicated i n  
Fig. 42, a col lector  p a r a l l e l  t o  the z-ax is  i s  placed along the  pos i t ive  y-axis 
a t  Ro, t he  e f f ec t s  of i f  a re  given i n  Table V I 1  f o r  several  d i rec t ions  of the  vec- 
t o r  veloci ty .  
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TABU V I 1  

EFFECT OF INITIAL VELOCITY 

Maximum Orbi ta l  Dimensions Direct ion 
of Center Effect ive 

Along -y ax is  Alqng kx a x i s  MI 
Direction 

-t v = o  0 

+X -Y 

-X +Y 

RoB2e 
2mE 

ROB e 
2mE 

2 

RO 

2v 
Ro + 

RO 

€io.+ - V 

w 

V 

w 
Ro - - 

The ef fec t ive  values of  reso lu t ion  above are based on those ions which a re  

The prac- 
created a t  the  phase angle which r e s u l t s  i n  t h e  fewest number of revolutions 
while the  maximum o r b i t a l  dimensions are independent of phase angle. 
t i c a l  e f f e c t s  of an i n i t i a l  ve loc i ty  are t o  reduce the e f f ec t ive  resolution, de- 
pending on the vector direct ion,  and t o  require  electrode spacings which allow 
the ion  t o  reach the co l lec tor  before i t s  o r b i t  ca r r i e s  it i n t o  one of the sur -  
faces.  

* I n i t i a l  ve loc i ty  of  the  ion i n  our appl icat ion arises from thermal energy and 
the  r e l a t i v e  motion of the  rocket with respect t o  the ambient atmosphere. 
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C. EFFECTS OF A SUPERIMPOSED D-C FIELD 

The path of an ion i n  crossed d-c e l e c t r i c  and magnetic f i e l d s  i s  known t o  
be a cycloid and can be expressed by the  parametric equations: 

a!' 
& 

y = - - (cut - s i n  r u t )  

cy' 
02 

x = - (1 - cos c u t )  

where 

a' = eE'/m, 
E '  = d-c e l e c t r i c  f i e l d  gradient, and 
ru = eB/m. 

From ( C l )  and (C2) it can be noted t h a t  t h e  x-axis excursion of the ion  is  l i m -  
i t e d  between the values zero and 2a'/&', while it proceeds down the negative y- 
axis a t  an averaged ve loc i ty  given by 

eE' rn E '  a' 
w m eB B 

- - - = -  - -  

I n  Ref. 12, C. E. Berry suggests t h a t  t h i s  e f f e c t  can be used t o  sweep continu- 
ously all nonresonant ions from the analyzing volume due t o  t h e i r  d r i f t  down the  
negative y-axis away from the col lector .  Comparing (133) with (A82,we note that 
when E'/B = E/2B, the  resonant i on  w i l l  not gain or lose any dis tance toward t h e  
co l l ec to r  i n  i t s  o r b i t a l  path. 
f i ed .  
pos i t ive  y-axis o r b i t a l  r a d i i  is 3:l. Hence, i n  t h i s  case, t he  e f f ec t ive  is  
twice the  dis tance of co l lec tor  from beam ax is .  

Hence, f o r  col lect ion,  E '  < E/2 must be satis- 
When E '  i s  adjusted t o  E/4, f o r  example, the  r a t i o  of the negative t o  
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